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Figure S1: Visualizations of Different Sketches of Large-Scale scRNA-seq Datasets, Related 

to Figure 3 
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Visualizations using (A) t-SNE and (B) UMAP of sketches containing 2% of the cells from the 

adult mouse brain (Saunders et al., 2018) and from the developing and adolescent mouse CNS 

(Zeisel et al., 2018) using uniform random sampling, SRS, k-means++ and geometric sketching. 

Numbers of cells from each cell type are given in Table S3-S4. Note that all data-dependent 

sampling methods underrepresent oligodendrocytes compared to uniform sampling, which is 

expected given the low transcriptional heterogeneity among oligodendrocytes as quantified by 

differential entropy (Table S3-S4). While some sketches obtained by k-means++ sampling and 

SRS may appear similar to geometric sketches, they quantifiably preserver fewer rare cell types 

and have lower sketch quality as measured by the Hausdorff distance, which we show in our 

experiments. 
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Figure S2: Additional Benchmark Comparisons between Geometric Sketching and Other 

Sampling Methods, Related to Figure 3 

(A) Sampling with geometric sketching better reflects differences in cluster volume instead of 

density. Geometric sketching samples from clusters according to the volume of space occupied 

by each cluster. Bar height indicates means and error bars indicate standard error across 10 

random seeds. The 𝑦-axis indicates the KL divergence of expected cluster representation based 

on known cluster volumes compared to observed cluster representation in the subsampled data; 

KL divergences for the equal density, variable volume experiment are plotted on a log scale. 

Closer to 0 is better (indicates less bias introduced by density). The datasets consist of clusters of 

equal volume but varying densities or clusters with equal numbers of cells but varying volumes. 
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(B) Rarest cell types are more represented within a geometric sketch. We assessed 

overrepresentation of cell types within a sketch by computing the ratio of the observed number 

of cells over the expected number of cells (assuming uniform sampling probability) for each cell 

type; we then took the geometric mean of the ratios for the rarest half of all cell types within 

each dataset. Geometric sketching consistently overrepresents rare cell types and does so more 

than other sampling strategies in almost all cases. Because we set the number of covering boxes 

equal to the desired sketch size, as the sketch size increases, the overrepresentation ratio with 

respect to uniform sampling will converge to unity. (C) Unbalanced measurement of clustering 

recapitulation of biological cell types. The same result as in Figure 3D but without equal 

weighting of biological cell types. Louvain clustering was applied to a sketch, transferred to the 

full dataset, and then measured for agreement with biological cluster labels using adjusted 

mutual information (Method Details). Unsupervised clustering of geometric sketches more 

consistently recapitulates biological cell types than clustering results obtained by uniform 

sampling and is comparable to or better than clusters of sketches from k-means++ and SRS.  
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Figure S3: Unique Gene Heatmap of Umbilical Cord Cells, Related to Figure 4 

Heatmap of the t-SNE embedded geometric sketch visualizing cells from human umbilical cord 

blood colored by the number of unique genes. Lighter red indicates higher levels of sparsity and 

darker red indicates lower levels of sparsity. The lowest number of unique genes in the dataset 

was 500 and the highest was 6485 out of a total of 33,694 genes considered in the study. 

       

  
 

 
 

  

Number of unique genes 

500 6485 
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Figure S4: Scalability and Accelerative Capacity of Geometric Sketching, Related to Figure 

5 

(A) PCA runtime versus dataset size. The time required to learn a 100-dimensional 

representation of a scRNA-seq dataset using a randomized PCA (Halko et al., 2011) scales 

linearly with the size of the dataset and has reasonable scalability to large-scale scRNA-seq 

experiments in the future. Each point given in the above plot corresponds to the time taken to 

compute a 100-dimensional embedding on each of the four main benchmark datasets used in the 
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study. (B) Integration quality of methods with and without geometric sketching-based 

acceleration. 

Closer to 1 indicates more dataset mixing within clusters; see Method Details for description of 

our integration quality metric. Geometric sketching-based acceleration of integration methods 

yields integrations with comparable or better quality than applying the integration methods to the 

full dataset. Both geometric sketching and uniform sampling have comparable integration 

quality, but based on our other results, it is likely that geometric sketching would better align rare 

cell types in addition to common cell types. Using SRS and k-means++ sampling produces worse 

integration quality. 
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Figure S5: Methodologically Relevant Properties of Geometric Sketching, Related to STAR 

Methods 

(A) Near monotonicity of covering boxes with box length. Cardinality of plaid covering near-

monotonically decreases with respect to the length parameter. For PBMC and adult mouse brain 

datasets, we plotted the number of boxes returned by our plaid covering algorithm as a function 
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of box length provided as input. The overall monotonic relationship allows us to use binary 

search to find the length at which the plaid cover contains roughly the desired number of boxes. 

(B) Low fractal dimension of single-cell data. On the PBMC dataset, we computed the fractal 

dimension (averaged over the data points) at varying box lengths using the Chebyshev metric, 

which induces covering spheres that appear as boxes. Letting 𝑁𝑟(𝑥) be the number of data points 

covered by a sphere of radius 𝑟 centered at 𝑥, we define fractal dimension as 

log(𝑁𝑟1
(𝑥) 𝑁𝑟2

(𝑥)⁄ )/ log(𝑟1 𝑟2⁄ ). Plot shows fractal dimension computed over 50 evenly spaced 

intervals between 0 and 0.5. Various vertical lines denote the radiuses that corresponds to the 

box size chosen by our geometric sketching algorithm when obtaining sketches containing 

different percentages of the overall dataset. At the scale at which our geometric sketching 

operates, PBMC data displays a low fractal dimension of around 2. (C) Partial Hausdorff 

distance at different parameter cutoffs. We measured the partial Hausdorff distance at different 

values of the parameter 𝑞 (Method Details), including 𝑞 = 1e-4 (Figure 3A), 𝑞 = 1e-3 and 𝑞 = 

0 (the last corresponding to the classical Hausdorff distance). Geometric sketching outperforms 

all other sampling methods when measured with a robust, partial Hausdorff distance with 

positive 𝑞. Under the classical Hausdorff distance, geometric sketching also outperforms all 

other sampling methods in almost all cases except for larger sketches in the adult mouse brain 

dataset due to a single outlier cell, but the anomalous cell was removed when computing more 

robust Hausdorff distance measures.  
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Cell Type 
Number of 

cells 
% of total 

Differential 

Entropy 

293T 28 0.669056 -461.66 

Jurkat 4157 99.33094 -270.88 

 

Table S1, Related to Figure 3 

Statistics for 293/Jurkat mixture data; for the differential entropy calculation, see Method 

Details. 
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Cell Type 
Number of 

cells 
% of total 

Differential 

Entropy 

CD14+ Monocyte 3817 5.565844 -228.419 

CD19+ B 3306 4.820718 -213.47 

CD4+/CD25 T 2812 4.100381 -238.942 

CD4+/CD45RA+/CD25- Naive T 3126 4.558247 -230.899 

CD4+/CD45RO+ Memory 5859 8.543432 -223.313 

CD4+ Helper T 11445 16.68878 -222.592 

CD56+ NK 14112 20.57773 -232.116 

CD8+/CD45RA+ Naive Cytotoxic 21975 32.04334 -232.351 

CD8+ Cytotoxic T 1865 2.719491 -219.693 

Dendritic 262 0.382041 -281.506 

 

Table S2, Related to Figure 3 

Statistics for PBMC data; for the differential entropy calculation, see Method Details. 
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Cell Type 
Number of 

cells 
% of total 

Differential 

Entropy 
Uniform k-means++ SRS 

Geometric 

sketching 

Astrocyte 54444 8.176518 -285.773 1088 1090 389 1277 

Endothelial Stalk 39298 5.901859 -271.857 761 782 533 556 

Endothelial Tip 3818 0.573396 -277.978 84 107 175 815 

Ependymal 2157 0.323943 -282.046 33 68 102 165 

Macrophage 1695 0.254559 -290.916 43 31 47 262 

Microglia 4614 0.692941 -275.472 86 75 99 397 

Mural 12083 1.814651 -270.937 247 297 346 519 

Neurogenesis 2372 0.356232 -257.468 47 89 171 151 

Neuron 428051 64.28563 -232.534 8655 9746 10821 7975 

Oligodendrocyte 104773 15.73504 -342.73 2031 747 53 627 

Other (unlabeled) 379 0.056919 -281.542 5 10 24 49 

Polydendrocyte 12174 1.828318 -260.35 237 275 557 524 
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Table S3, Related to Figure 3 

The second through fourth columns give the statistics for adult mouse brain data; for the 

differential entropy calculation, see Method Details. The fifth through seventh columns give the 

number of cells from each cell type in subsamples visualized in Figure 3B from Saunders et al. 

(2018). 
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Cell Type 
Number of 

Cells 
% of total 

Differential 

Entropy 
Uniform k-means++ SRS 

Geometric 

sketching 

Astrocyte 34915 7.504067 -293.16 697 949 905 1194 

Ependymal 2777 0.596844 -274.99 49 115 339 614 

Immune/Blood 14081 3.026343 -289.20 265 418 350 466 

Neuron 147059 31.60649 -243.09 2982 4823 3911 4533 

Oligodendrocyte 219220 47.11561 -338.52 4371 1649 2273 1098 

Peripheral Glia 16066 3.452967 -328.23 332 322 259 230 

Vascular 31163 6.697673 -265.75 609 1029 1268 1170 
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Table S4, Related to Figure 3 

The second through fourth columns give the statistics for developing and adolescent mouse CNS 

data; for the differential entropy calculation, see Method Details. The fifth through seventh 

columns give the number of cells from each cell type in subsamples visualized in Figure 3B. 


